Design Rationale and Surgical Technique

never stop moving®
Described by Charles Neer in 1983, the shoulder pathology known as Cuff Tear Arthropathy (CTA) has historically been seen as a significant surgical challenge.

Non-constrained total or hemi shoulder arthroplasties have limited clinical outcomes in such indications, and most of the constrained and semi-constrained prostheses developed in the 1970’s-1980’s for CTA (in particular, all reversed ball and socket designs) remained purely experimental due to poor motion capability, instability and a high rate of glenoid loosening.

In 1985, Paul Grammont (Dijon University Hospital – France) designed the first semi-constrained reverse concept that met the challenges inherent in cuff tear arthropathy cases. Known today as the DePuy DELTA CTA®, this shoulder prosthesis is a leading treatment for shoulder cuff tear arthropathy, with more than twenty years of clinical success and 20,000 cases performed all over the world.

Based on the experience of the DELTA CTA® System, the next generation of reverse shoulder arthroplasty, the DePuy Orthopaedics DELTA XTEND™ prosthesis has been designed using scientific, engineering, and clinical knowledge in CTA cases in order to extend the clinical success associated with the 20 year history of the DELTA CTA System.

Keeping the three design features that differentiated the DELTA CTA System from previous reverse designs and made it successful:

- Joint center of rotation positioned on the glenoid bone surface to avoid pull-out torques on the glenoid component
- Non-anatomic neck-shaft angle (155 degrees) for joint stability
- Optimal deltoid tensioning to maximize its action without over-stretching the tissues

Reducing the risk of scapular neck erosion and maximizing the shoulder range of motion:

- Inferior overlap of the glenoid component allowed by a new eccentric glenosphere design and a new metaglene fixation system

Preserving bone to permit intervention and faster recovery with:

- Curved-back metaglene design
- Reduced proximal geometry monobloc humeral stem for cemented application
- Cementless modular stem with eccentric epiphysis option

Design based on the success of the DELTA CTA Reverse Shoulder means that the DELTA XTEND System is the next step forward for management of patients with Cuff Tear Arthropathy. The DELTA XTEND System allows you to treat more patients, effectively.

The DELTA XTEND Surgeon Design Team

Dr. Didier Capon
France

Dr. David Collins
USA

Prof. Anders
Ekelund
Sweden

Dr. Laurent
Lafosse
France

Prof. Lieven
De Wilde
Belgium

Dr. Cécile Nérot
France

Dr. Ludwig
Seebauer
Germany

Dr. Michael
Wirth
USA
Contents

Design Rationale
Cementless Modular Stem 4
Cemented Monobloc Humeral Implant 4
Modular Epiphysis ... 4
Polyethylene Humeral Cups 5
Humeral Cup Depth .. 5
Glenoid Component ... 5
DELTA XTEND™ CTA Heads 5
PREMIERON® X-Linked Polyethylene 6-7

Surgical Technique
DELTA XTEND Key Surgical Steps 8-9
Pre-operative Templating and Patient Positioning 11
Surgical Approach .. 11
Intramedullary Canal Preparation 14
Humeral Head Resection 15-17
Exposing the Glenoid 18-19
Positioning the Metaglene Central Peg 20-22
Reaming the Glenoid Bone 23-24
Metaglene Implantation 25
Inferior and Superior Metaglene Screw Placement ... 26-29
Anterior and Posterior Metaglene Screw Placement ... 30-31
Placement of the Proximal Humeral Reaming Guide 32
Proximal Humeral Reaming
Cementless Modular Humeral Implants 33-34
Distal Humeral Broaching
Cementless Modular Humeral Implants 35
Humeral Trial Stem and Epiphysis Insertion
Cementless Modular Humeral Implants 36-37
Proximal Humeral Reaming
Cemented Monobloc Humeral Implants 38
Humeral Trial Implant Insertion
Cemented Monobloc Humeral Implants 39
Glenosphere Trial Placement 40
Cup Trials and Trial Reduction 41
Joint Tensioning and Stability Assessment 42
Definitive Glenosphere Fixation 43-45
Definitive Humeral Implant Insertion
Cementless Modular Humeral Implants 46
Definitive Humeral Implants Insertion
Cemented Monobloc Humeral Implants 47
Definitive Humeral Implant Insertion 48-50
Cases of Proximal Humeral Bone Loss 51-52
Revision to Hemi-Arthroplasty 53
Post-Operative Management 54

Ordering Information
Implants ... 55-57
Instrumentation ... 58-61
DELTA XTEND Design Rationale

The DELTA XTEND System is a total, semi-constrained shoulder arthroplasty that reverses the normal relationship between the scapular and humeral components, moving the scapulo-humeral joint center of rotation medially and inferiorly, increasing the deltoid lever arm as well as the deltoid tension and therefore allowing the muscles of the deltoid group to compensate for rotator cuff deficiency. The DELTA XTEND Humeral Stem is designed for cemented fixation. The glenoid component is cementless with four screws as primary fixation and HA coating for secondary fixation. Each design feature has been defined to help achieve the clinical goals for CTA Cases with the DELTA XTEND Reverse Shoulder.

Cementless Modular Stem

1. Fluted stem design based on the GLOBAL® Shoulder Stem Design - positioned in anatomic version for optimal press-fit fixation
2. Hydroxyapatite (HA) coated titanium alloy for optimal cementless application

Modular Epiphysis

3. Positioned at 0-10° retroversion for increased internal rotation
4. Centered and eccentric options to suit to anatomy and optimize press-fit fixation
5. 155° neck shaft angle for optimal joint stability
6. Reduced dimensions for bone preservation

Cemented Monobloc Humeral Implant

1. Polished cobalt chromium alloy for optimized cemented fixation
2. 155° neck shaft angle for optimal joint stability
3. Reduced proximal geometry for bone preservation
4. Standard and long monobloc stems with smooth, perforated fins and proximal height laser markings for use in proximal bone loss cases
Polyethylene Humeral Cups

3. +3, +6 and +9mm cup sizes are available to adjust joint tension for optimal deltoid function based on clinical heritage.5,6

Humeral Cup Depth

INCREASING CONSTRAINT

Glenoid Component

5. Increased glenosphere diameter (38 and 42mm) and eccentric option for improved stability, maximized range of motion and reduced risk of scapular erosion.8

7. Center of rotation on glenoid bone surface for high resistance to loosening shear forces.5,8,13

8. Two locking variable angle screws (compress and lock) and two compression screws with +/- 10 degrees adjustable angulation for metaglene primary fixation, to maximize resistance to loosening shear forces.13

9. Curved back and smaller metaglene, for bone preservation and low positioning on the glenoid to reduce risk of scapular bone erosion.8,13

DELTA XTEND CTA Heads

• Hemi-heads available in two diameters and two head heights for easy revision from reverse to hemi-arthroplasty
• Extended articular surface for improved potential range of motion
PREMIERON® X-Linked Polyethylene

X-traordinary Wear Reduction

Proven Performance
DePuy Orthopaedics offers polyethylene solutions optimized for the unique demands of each shoulder joint. PREMIERON® X-Linked Polyethylene creates a technologically advanced shoulder implant that has demonstrated an 85% reduction in wear debris over conventionally manufactured and sterilized components. In shoulder simulator testing, PREMIERON significantly lowered the calculated osteolytic potential, and thus the risk of aseptic loosening.

X-traordinary Mechanical Integrity

Optimal Balance
Today’s shoulder patients demand more from their replacements than ever before. Their active lifestyles can benefit from the significant advances in wear reduction offered by moderately crosslinked polyethylene. PREMIERON balances wear reduction and mechanical integrity while maintaining oxidative stability through an exclusive scientific formulation that has been proven to provide improved resistance to the multidirectional wear typical of shoulder implants.

Materials and Process:
- GUR 1020 polyethylene resin
- 5 Mrad of irradiation induces moderate cross-linking
- Thermally treated to 155 degrees to eliminate free radicals for an oxidatively stable material
- Gas plasma terminal sterilization

X-acting Biomechanical Criteria

Range of Motion
The significant wear resistance of PREMIERON, coupled with the design of DELTA XTEND Humeral Cup Implants, addresses the unique biomechanical concerns associated with semi-constrained reverse shoulder prostheses. This combination, based on a long clinical heritage, enables optimal deltoid use and balanced soft tissue tension while reducing the risk of joint overtensioning, nerve injury, or acromial failure.
PREMIERON X-linked polyethylene improves resistance to the multi-directional wear generated by shoulder implants and increases durability without compromising mechanical properties.16,17
DELTA XTEND Key Surgical Steps

Humeral Surgical Steps

Superior-lateral Approach

1. Approach

2. Humeral Head Resection

Glenoid Surgical Steps

1. Choice of Optimal Metaglene Positioning

2. Cannulated Glenoid Reaming

3. Metaglene Central Peg Drilling

Delto-pectoral Approach

1. Approach

2. Humeral Head Resection

Modular Implant Cementless Technique

3. Proximal Reaming Guide Positioning

Monobloc Implant Cemented Technique
Humeral Surgical Steps

4. Determination of the Epiphysis Size and Eccentricity
5. Proximal Humeral Reaming
6. Diaphyseal Broaching and Angulation Measurements
7. Epiphysis / Diaphysis Assembly
8. Final Implant Insertion
9. Cup Impaction

Glenoid Surgical Steps

4. Metaglene Impaction
5. Inferior and Superior Locking Screw Fixation
6. Anterior and Posterior Spherical Head Screw Fixation
7. Glenosphere Implantation
Pre-operative Templating

An initial assessment of the glenoid bone should be carried out using radiographic and CT imaging to determine whether the patient is suitable for treatment. The size of the glenoid vault should be assessed inferiorly in particular to ensure that all four metaglene screws can be placed within glenoid bone.

Pre-operative planning should also be carried out using AP and lateral shoulder radiographs of known magnification and the available template to help the surgeon determine the size and alignment of the implant (Figure 1). The final decision should be made intraoperatively.

Surgical Approach

The DELTA XTEND prosthesis can be implanted using a superior-lateral deltoid split approach or a deltopectoral approach.

The superior-lateral approach enables clear visualization of the glenoid and therefore facilitates the implantation of the glenoid components.

The delto-pectoral approach has the advantage of offering a good view of the inferior part of the glenoid. Therefore, the choice mainly depends on the surgeon’s preference and clinical parameters.

Revision surgery, for instance, is usually performed using a delto-pectoral approach since the patient has already had that incision and since it allows for a longer humeral incision when faced with difficult removal of the humeral stem. However, for cases of retroverted glenoid, the implant placement can be more difficult via the delto-pectoral approach and can lead to damage of the deltoid muscle. Moreover, as the rotator cuff lesion is mainly located at the supero-posterior aspect of the cuff, the (partial) insertion of the remaining subscapularis (that is often needed through this approach) could weaken the remaining muscular structure. The superior-lateral approach may be preferred in these cases.

Patient Positioning

The patient should be in the beach chair position, with the affected arm completely free and on a support (Figure 2).
 Superior-lateral Approach

The skin incision is 10-12cm long and can be antero-posterior along the lateral edge of the acromion or made in a lateral direction (Figure 3). Following subcutaneous dissection, separate the anterior and middle deltoid muscle bundles opposite the lateral margin of the acromion using blunt dissection (Figure 4). The dissection starts at the level of the AC joint, 5-7mm posterior to the tip of the acromion, and extends straight laterally down into the deltoid muscle. It should not extend more than 4cm from the external aspect of the acromion in order to preserve the axillary nerve which is located at the turning fold of the subacromial bursa.

When the subacromial bursa is visible, gentle longitudinal traction in line with the limb allows a retractor to be placed in the subacromial space. The anterior deltoid is then released subperiosteally from its acromial insertion up to the AC joint. The deltoid release from the anterior acromion can include a small piece of bone to facilitate repair and to protect the deltoid muscle.

Once the subacromial bursa has been removed, the humeral head is visible at the anterior edge of the acromion. Exposure may be improved, if necessary, by dividing the AC ligament and performing acromioplasty.

The limb is then externally rotated and the head is dislocated antero-superiorly to facilitate positioning of the cutting guide. If the bicep tendon is still present, a tenotomy or tenodesis should be performed. The subscapularis, teres minor and infraspinatus are retained when present. A partial detachment of the subscapularis may be performed when the superior dislocation of the humerus is difficult to obtain.
Delto-pectoral Approach

The skin incision follows the line from the midpoint of the clavicle to the midpoint of the arm (Figure 5). Subcutaneous flaps are elevated to expose the fatty strip that marks the delto-pectoral interval. Dissect medial to the cephalic vein and retract it laterally with the deltoid muscle (Figure 6). Incise the clavipectoral fascia from the inferior border of the coracoacromial ligament distally to the superior border of the tendon of the sternal head of the pectoralis major (Figure 7). Sharply and bluntly dissect the humeroscapular motion interface (subacromial, subdeltoid and subcoracoid). Palpate the axillary nerve at the anterior-inferior border of the subscapularis muscle. Electrocoagulate or ligate the anterior humeral circumflex vessels near the humerus at the inferior border of the subscapularis (Figure 8).

If the bicep’s long head tendon is intact, open its sheath and tenodese the tendon in the groove or to the pectoralis major tendon with non-absorbable sutures. Excise the proximal biceps tendon and hypertrophic sheath. A biceps tenotomy can also be performed in elderly patients.

Place a tag suture in the tendon of the subscapularis, 2cm medial to its point of insertion, in the lesser tuberosity. Release the tendon, along with the underlying capsule, from the lesser tuberosity and the proximal humerus (Figure 9). Strip the remaining inferior and posterior-inferior capsule from the humerus. Dislocate the humeral head (Figure 10).
Intramedullary Canal Preparation

Using the 6mm medullary canal reamer, make a pilot hole in the cortical surface of the bone eccentrically and as superior as possible so that the reamer passes directly down the intramedullary canal (Figure 11). Ream the medullary canal using the T-Handle on the reamer. Do not use a power tool as this could remove more bone than necessary.

When using the standard length prosthesis, pass the reamer down the intramedullary canal until the projecting circular mark on the reamer is level with the pilot hole. When using the long stem prosthesis, pass the entire length of the cutting flutes down the intramedullary canal.

Continue to ream sequentially until the reamer begins to bite on the cortical bone of the intramedullary canal of the humerus (Figure 12).

The final reamer size will determine the size of the cutting guide handle, the epiphyseal reaming guide, the broach, trial stem and final implant. For example, if the 12mm reamer begins to gain purchase in the intramedullary cortical bone, use a 12mm humeral trial stem and final component.
Humeral Head Resection

Select the handle for the cutting guide of the appropriate size. Taking the previous example, if reaming stopped at 12mm, select the 12mm handle. Select the cutting guide and cutting plate according to the surgical approach used (superior-lateral or delto-pectoral).

Assemble the plate on the cutting guide first (1) and then fix the cutting guide on the cutting handle (2) (Figure 13).

The cutting guide should be fully seated on the cutting handle.

Drive the cutting assembly down the intramedullary canal until it is fully in contact with the top of the humeral head. The orientation pin is then passed through the hole in the cutting handle in the desired retroversion. The retroversion is calculated with reference to the forearm axis. This should preferably be close to 0 to 10 degrees since excessive retroversion can restrict joint rotation, especially internal rotation. The cutting handle should then be turned to align the orientation pin and the forearm (Figure 14).
Slide the cutting plate to adjust the resection level. The cutting plate color code shows if the resection level is appropriate. If the cutting level indicator is green, the guide is at the correct height. If it is red, the cutting plate needs to be adjusted (Figure 15).

Visually verify that the resection is 1 to 2mm below the proximal area of the greater tuberosity (at the level of the supraspinatus insertion in an intact shoulder).

Note that the angle of the cut is 155 degrees and therefore different from the anatomical neck/shaft angle (135 degrees). This angle gives optimal joint stability to the reverse prosthesis.6

Pre-drill the cortical bone through the cutting plate using a 3.2mm drill bit, and insert the two fixation pins to fix the cutting plate to the humerus (Figure 16).
Remove the cutting guide and add a third fixation pin through the cutting plate to secure the assembly and resect the humeral head, aligning the saw blade with the superior aspect of the cutting plate (Figure 17, Step 1).

Note: The two external pins are parallel. The cutting plate can therefore be turned upside down before securing it with the third pin to obtain a flat surface (Figure 17, Step 2).

Place a protecting plate on the humeral resection surface to protect the bone from damage during the following surgical steps (Figure 18).

Pass a forked retractor under the scapula to lower the humerus. If this provides a clear view of the glenoid surface, the resection level is correct. If not, a further humeral head resection may be performed.
Exposing The Glenoid

Position a forked retractor in the axillary margin of the scapula under the inferior glenoid labrum to move the humerus down or backward, depending on the approach taken (Figure 19).

When exposing the glenoid, it is critical to note the presence of the axillary nerve and protect it at all times. Excise the biceps remnant and entire labrum. Release the entire capsule from around the glenoid. In certain cases, the capsule may have to be excised depending on the extent of any contractures and the adequacy of exposure. In some cases, the origin of the triceps long head may be incised from the infraglenoid tubercle.

Bluntly (finger or elevator) dissect in a circumferential manner from the base of the coracoid process to well beyond the most inferior aspect of the glenoid. It is essential to palpate the following osseous scapular orientation points: the base of the coracoid process, the inferior part of the glenoid neck and, when possible, infra glenoid tubercle and lateral border of the scapula. Retractors should be placed so that the entire glenoid face is in clear view to aid accurate placement of the guide pin.
Subscapularis Mobilization in the Delto-pectoral Approach

Both sharp and blunt methods are used to mobilize the subscapularis. Completely release the rotator interval to the base of the coracoid process and release the superior border of the subscapularis from the base of the coracoid process. Then completely release the motion interface between the coracoid muscles (conjoined tendon) and the anterior subscapularis. Lastly, completely release the posterior border of the subscapularis tendon and distal muscle belly from the anterior and anterior-inferior glenoid rim, glenoid neck and the most lateral part of the scapular body.

Glenoid Preparation

Remove any remnants of labrum from the glenoid. Then remove all articular cartilage (large straight curette) from the glenoid face. In addition, any osteophytes present may also have to be removed to determine the bony anatomy (Figure 20).
Positioning the Metaglene Central Peg

Positioning of the metaglene is important to achieve an optimal glenoid fixation, to limit potential bone impingement and to achieve a final good, stable range of motion. Therefore, particular attention should be given to that surgical step.

The position chosen should maximize contact with the glenoid bone surface and to allow secure fixation of the screws in bone.

The metaglene should ideally be positioned on the lower circular area of the glenoid bone. The metaglene central peg is positioned in the center of the inferior circle of the glenoid (This point is often posterior and inferior to the intersection of the glenoid axis) (Figure 21).

These anatomical reference points help to position the metaglene as inferior as possible on the glenoid bone in order to limit potential bone impingement, while keeping a secure glenoid implant fixation. However, radiographic, CT images combined with X-ray templates and pre-operative view can lead to a choice of position a little bit more superior to obtain fixation in good bone stock and complete seating of the metaglene on the bone.
The metaglene positioner is used to obtain the optimal metaglene position. The positioner plate is the same diameter as the metaglene.

Assemble the positioner by inserting and threading the internal rod into the positioner handle (Figure 22).

Insert the hex head tip of the handle in the corresponding plate hole (right or left depending on the shoulder being operated upon) and lock the assembly by tightening the internal rod (Figure 23).

Note: The handle is set at an angle of 20 degrees to the plate to ensure optimal visibility (Figure 24).
Position the plate as low as possible so that its border follows the inferior edge of the glenoid. Note that inferior osteophytes may result in malpositioning. X-rays should therefore be checked to avoid this problem.

Providing that the morphology of the glenoid hasn’t been altered by the disease, the guide plate is perpendicular to the plane of the glenoid face. Make sure that the proximal handle of the instrument is not tilted superiorly. The guide pin should be inserted either perpendicularly to the glenoid face or with the distal tip of the guide pin in a slightly superior direction. This ensures that the glenosphere will either be perpendicular to the plane of the glenoid face or have a slight inferior tilt which may reduce the risk of scapular notching.

Place the 2.5mm metaglene central guide pin in the plate is central hole and drill it through the far cortex using a power tool (Figure 25).

Remove the metaglene positioner, leaving the guide pin in place (Figure 26).
Reaming the Glenoid Bone

Slide the 27mm glenoid resurfacing reamer onto the central guide pin and ream either manually or using a power tool. This reamer prepares a smooth curved surface with the same diameter as the metaglene (Figure 27). Use the metaglene reamer carefully to avoid any inadvertent fracturing of the glenoid, especially if the glenoid is sclerotic. Make sure the axillary nerve is protected. Initiate and proceed with the reaming, turning at low speed prior to engaging the glenoid. It is useful to collect the osseous products of reaming and irrigate often to maximize visualization and thereby ensure optimal reaming. Be careful not to over ream and to preserve the subchondral bone.

Ream the superior glenoid bone by hand, using the manual 42mm glenoid reamer (Figure 28). This step is necessary to avoid any potential conflict between the glenosphere and the superior area of the glenoid bone (Figure 29).

Manual reaming should be carried out until the central part of the manual reamer is in full contact with the curved central glenoid surface.
Use the manual glenoid reamer to ream the glenoid anteriorly, posteriorly and inferiorly if necessary. A smooth surface without any remaining cartilage should be obtained.

Check the adequacy of the reaming by applying the glenoid reaming level checker on the glenoid surface. No space (except if due to bone erosion) should be seen between the instrument and the glenoid surface (Figure 30).

Remove the resurfacing reamer, leaving the metaglene central guide pin in place (Figure 31).

Connect the cannulated stop drill to the power source and drill the central hole over the guide pin until full contact between the drill and bone is obtained (Figure 32).

Remove the stop drill and the central guide pin.
Metaglene Implantation

Assemble the internal rod of the metaglene holder in the metaglene holder main body. Insert the metaglene holder hex tip in the final metaglene implant central hole and tighten the assembly. (Figure 33).

Place the metaglene on the glenoid bone and ensure that the metaglene is fully seated. Apply bone graft if necessary to help fill surface irregularities between the metaglene and the glenoid bone. Rotate the metaglene so that the inferior screw can be aimed toward the scapular neck. The vertical metaglene marking should be aligned with the scapular neck inferiorly and with the base of the coracoid process superiorly (long axis of the glenoid bone) (Figure 34). The metaglene peg is 0.6mm larger in diameter than the drill to enable a press fit. Gently impact with a mallet in the proper orientation for inferior screw placement and then remove the metaglene holder.
Inferior and Superior Metaglene Screw Placement

Locking metaglene screws allow an angulation of ±10 degrees around the optimal 17 degrees screw positioning recommended by Professor Grammont (Figure 35).

Place the 2.5mm drill guide in the metaglene inferior hole. The drill guide can be angled to ±10 degrees but should always be seated fully in the metaglene hole. Palpate the scapular neck and aim into good bone. Using the 2.5mm drill bit, start drilling through the subchondral bone to approximately 10 to 12mm deep (Figure 36). Then stop drilling and push gently on the drill bit to make sure that the drill is contained in the bone. Redirect and redrill if uncontained. When a satisfactory drilling direction has been obtained, drill and push until the cortex is perforated.
The goal is to have a sufficiently long screw inferiorly, usually 36mm or more. The length of the screw is indicated on the drill bit by laser markings (Figure 37). The screw depth gauge can also be used to assess optimal screw length.

Insert the 1.2mm guide pin through the drill guide and then remove the drill guide (Figure 38).

Slide the locking screw of the appropriate length onto the guide pin. Check that the internal tightening screw is unlocked (it should rotate freely) (Figure 39).
Slide the locking screwdriver body on the guide pin and insert the tip into the four slots on the screw (Figure 40). Do not use the internal screwdriver rod at this stage.

Note: Slide down the screwdriver sleeve completely to protect the screw head.

Tighten the screw to compress the plate (Figure 41a).

Remove the screw guide pin with the pin extractor before final tightening to avoid stripping, making sure that the internal locking screw stays in place.

Repeat the same steps for the superior locking screw.

Note: Use care to ensure that the driver remains in axial alignment with the screw so that the driver tip remains fully engaged (Figure 41b).

Note: The tip of the screwdriver can lose contact with the fins and does not torque evenly on all sides if the protecting sleeve is not used (Figure 41c).

Note: The protecting sleeve is not designed to lock onto the screw. It must be held in place with a finger during insertion.
Drill the hole for the superior locking screw anticipating exit through the far cortex using the same methods as Figure 36 (inferior screw placement) (Figure 42). The superior screw should be directed at the base of the coracoid process and should have an anterior orientation to avoid the suprascapular nerve.

To obtain optimal compression of the metaglene plate on bone, alternate tightening of the superior and inferior locking screws (Figure 43).

Note: Use care to ensure that the driver remains in axial alignment with the screw so that the driver tip remains fully engaged.
Anterior and Posterior Metaglene Screw Placement

The surgeon may use locking or non-locking screws in the anterior or posterior holes. Both types of screws will allow an angulation of up to ± 10 degrees, but not in a direction convergent to the central peg axis to avoid conflict with the central peg (Figure 44).

Use the 2.5mm drill bit with the drill guide to set the most appropriate angle for ensuring that each screw is located in reliable bone stock (Figure 45).

The preferred position is usually chosen by palpating the anterior and posterior aspects of the scapula as well as examining the X-rays and CT scans. Drill in the direction of the central glenoid vault in an attempt to maximize the anterior and posterior compression screw lengths, in a direction parallel to or divergent from the central peg.
Screw length is determined from the laser marks on the drill bits or by using the depth gauge.

Slide the corresponding screws onto the guide pin and tighten using the 3.5mm cannulated hex screwdriver for non-locking screws or the locking screwdriver for locking screws (Figure 46).

Follow the same procedure for the posterior screw, then alternately tighten both screws until they are fully tightened.

Proceed with locking all variable angle screws used. Place the locking screwdriver main body in the head of the inferior screw. Make sure that the screwdriver sleeve is in its upper position and not in contact with the screw head.

Slide the locking screwdriver internal rod into the main body. The tip of the internal rod will make contact with the screw head. Tighten it fully, locking the screw in place by expanding its head (Figure 47).

Note: After inserting all four screws, tighten the locking screws with the internal rod for the locking screwdriver. Pull the sleeve up and off the screw head for this step.

Repeat the same steps to secure the superior locking screw and anterior or posterior screws if variable angle screws have been used.

The metaglene is left in place (Figure 48) and the humeral preparation is then carried out.
Placement of the Proximal Humeral Reaming Guide
Cemented Monobloc Humeral Implants and Cementless Modular Humeral Implants

Select the appropriate proximal reaming guide size (Figure 49). For example, if a 12mm intramedullary reamer and a 12mm cutting handle were previously used, select the 12mm proximal reaming guide.

Slide and screw the internal rod of the reaming guide holder into the holder main body. Then slide the reaming guide into the reamer holder and fasten the two parts together by firmly tightening the upper round handle (Figure 50).

Push the holder horseshoe plate fully down (Figure 51).

Slide the proximal reaming guide down into the intramedullary canal, rotating it if necessary to ensure that the horseshoe plate sits flat on the bone resection surface (Figure 52).

Drive the proximal reaming guide down until complete contact between the metal block and the resected bone surface is achieved (Figure 53).

Unscrew the upper round handle of the holder and remove the holder, leaving the proximal reamer guide in place (Figure 54).

The subsequent surgical steps depend on whether the humeral implant is cementless or cemented. For cementless implants, see pages 33-37. For cemented implants, see pages 38-39.
MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS FOR CEMENTLESS MODULAR IMPLANTS

The cementless modular implant is designed to allow the surgeon to place the epiphysis in anatomic version and the stem in anatomic version for an optimal press-fit.

The size and type (centered or eccentric) of modular epiphysis should be chosen to ensure that the best possible coverage of the bone resection surface is achieved.

First select the centered proximal modular reamer adaptor, and place it on the reaming guide’s angled pin.

Choose the most appropriate epiphysis size using the modular implant sizer disks, size 1 or 2. The sizer disk chosen should provide the best coverage of the bone resection surface without overhang (Figure 55).

If this does not provide a good fit with the bone resection surface, switch the centered proximal modular reamer adaptor for the eccentric adaptor in size 1. Be careful to position the eccentricity so that it is posterior and not anterior, double checking with the markings (anterior and posterior) on the adaptor.

Then check the epiphysis size again with sizer disk 1. If the bone coverage is not sufficient, use eccentric adaptor size 2 and sizer disk size 2 (Figure 56).

Remember the final decision made, with respect to the centered or eccentric epiphysis and size 1 or 2, will determine reamer and final implant sizes.
Proximal Humeral Reaming
Cementless Modular Humeral Implants

Remove the sizer disk, leaving the proximal modular reamer adaptor in place (Figure 57).

Select the appropriate proximal modular reamer in size 1 or 2, according to the results of the previous trials. Ream using a power tool. Power reaming should always be carried out carefully.

Complete reaming is achieved when the external reamer flange is in full and complete contact with the bone resection surface (Figure 58).

When the proximal reaming has been completed, first remove the reaming adaptor. Then remove the reaming guide using the reaming guide holder. If any bone remains in the center of the epiphysis, remove it.
Distal Humeral Broaching
Cementless Modular Humeral Implants

MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS FOR CEMENTLESS MODULAR IMPLANTS

The stem size will have been determined from the previous intramedullary reaming. If the 12mm intramedullary reamer has been used, select the 12mm broach and attach it to the broach handle. Make sure that the goniometer is in place on the broach handle.

Drive the broach into place, carefully checking that its anterior fin is aligned with the anterior aspect of the bicipital groove. This will ensure good distal stem orientation (anatomic version) for an optimized press-fit (Figure 59).

Drive the broach down carefully, (to avoid any cortical bone damage) until the rocking bar of the broach handle is in full contact with bone, both at the anterior and posterior aspects of the resection surface (Figure 60).

If there is a cortical bone damage where the rocking bar should contact bone, place the broach handle plate on the resection.

Read the adjustment angle which is indicated on the instrument.
Humeral Trial Stem and Epiphysis Insertion
Cementless Modular Humeral Implants

MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS FOR CEMENTLESS MODULAR IMPLANTS

The trial modular epiphysis (centered or eccentric, size 1 or 2, depending on the proximal reaming choices made) is placed on the trial modular stem (diameter chosen during distal reaming and broaching).

The epiphysis position corresponds to the adjustment angle previously read on the broach handle goniometer. For example, if 20 degrees right was read on the goniometer, the epiphysis hole marked 20 degrees right should be positioned in line with the stem orientation peg (Figure 61).

Note: This angulation corresponds to the difference between the version of the stem (close to anatomical retroversion – 20 to 30 degrees) and the epiphysis version for a reverse shoulder (close to 0 degrees retroversion).

No calculation is required: the instrumentation has been designed to provide direct measurement of this position on the goniometer.

The two components are then screwed together using the 3.5mm hex screwdriver and the special locking wrench for modular implants (Figure 62).

Both components are then mounted on the humeral implant driver by pushing and then releasing the blue button (Figure 63).
Humeral Trial Stem and Epiphysis Insertion
Cementless Modular Humeral Implants

MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS FOR CEMENTLESS MODULAR IMPLANTS

The component is then driven down the intramedullary canal, aligning the anterior fin of the stem with the bicipital groove.

The implant orientation can also be checked using the orientation pin placed in the implant driver handle. The pin should be placed in the same retroversion position used to position the cutting guide, i.e. close to 0 degrees retroversion. The orientation pin should then be aligned with the forearm axis and the trial implants driven down (Figure 64).

Impact the trial implant by gently tapping in the implant driver handle and remove the driver, leaving the trial implant in place (Figure 65). The driver is detached by pushing the blue button.

Figure 64

Figure 65
Proximal Humeral Reaming
Cemented Monobloc Humeral Implants

MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS FOR CEMENTED MONOBLOC HUMERAL IMPLANTS

The monobloc implant size should be chosen to match the initial distal reaming diameter.

Choose the most appropriate epiphysis size by placing a monobloc implant sizer disk in size 1 or 2 on the proximal reaming guide. The most appropriate size will be the sizer disk that provides the best possible coverage of the bone resection surface (Figure 66).

The size chosen, epiphysis size 1 or 2, will determine proximal reamer and final implant sizes.

Remove the sizer disk.

Select the appropriate proximal reamer for the monobloc implant, size 1 or 2, from the results of the previous trials. Ream the metaphysis using a power reamer (Figure 67).

Complete reaming is achieved when the external reamer flange is in full and complete contact with the bone resection surface.

When the proximal reaming has been completed, remove the reaming guide using the reaming guide holder.
Humeral Trial Implant Insertion
Cemented Monobloc Humeral Implants

MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS FOR CEMENTED MONOBLOC HUMERAL IMPLANTS

Select the appropriate trial humeral implant. For example, if the initial distal reaming was carried out using the 12mm reamer and proximal reaming was carried out using the size 1 proximal reamer, select monobloc humeral trial epiphysis number 1 with diameter 12mm.

Mount the trial implant on the humeral implant driver and drive it down the intramedullary canal.

The implant orientation should be checked using the orientation pin placed in the implant driver handle. The pin should be placed in the same retroversion position used to position the cutting guide, i.e. close to 0 to 10 degrees retroversion. The orientation pin should then be aligned with the forearm axis and the trial implants driven down (Figure 68).

Impact the trial implant by gently tapping the implant driver handle and remove the driver, leaving the trial implant in place (Figure 69). The driver is detached by pushing on the blue button.
Glenosphere Trial Placement

The glenosphere implants are available in two diameters, 38 and 42mm, and are either standard or eccentric spheres.

An overlap of 3 to 5mm is recommended to avoid conflict with the scapular neck (Figure 70). Depending on the shape of the scapular neck, this overlap can be achieved by using a standard metaglene just by lowering the metaglene. The 42mm glenosphere is recommended if the size of the joint allows (increases both the overlap and the range of motion). The eccentric glenospheres are recommended for more transverse scapular necks.

Fit the appropriate trial glenosphere (38mm or 42mm, centered or eccentric) to the metaglene using the metaglene holder (Figure 71). The trial glenosphere utilizes an interference fit to make the connection with the metaglene.

For eccentric glenospheres, the vertical laser mark on the trial glenosphere should be aligned with the base of the coracoid superiorly and the scapular neck inferiorly (Figures 71 and 72).

The arrow indicates the position of the eccentricity and should be positioned inferiorly, aligned with the scapular neck (Figures 72).

Note: If it is difficult to place the glenosphere trial, then check to ensure the superior portion of the glenoid has been reamed adequately and that there is no soft tissue in the way.
Cup Trials and Trial Reduction

Place the humeral trial cup (38 or 42 mm depending on the glenosphere size), with +3 mm of lateral offset, in the trial epiphysis (Figure 73). The shoulder should then be reduced with longitudinal traction and assessed for a full range of motion (Figure 74).

Figure 73

Figure 74
Joint Tensioning and Stability Assessment

Joint tensioning and stability assessment should be performed with particular care, using the following guidelines:

- Tension within the conjoined tendon should be noticeably increased and detectable by palpation.

- With the arm in a neutral position, apply a longitudinal traction force to the arm while observing the movement of the shoulder with respect to the entire shoulder girdle as well as the trial prosthetic joint. Tension is appropriate if, in response to the longitudinal traction, the entire shoulder moves before detectable separation of the trial prosthetic surfaces.

- External rotation may appropriately demonstrate slight gapping between the glenosphere and articular surface (2 to 3mm maximum).

- Positioning a hand or fist near the axilla to serve as a fulcrum, further adduct the arm and look for undesirable tendencies to sublux or dislocate laterally (a small opening of 2 to 3mm is acceptable). Estimate the maximum forward elevation.14

- Assess stability at 90 degrees, abduction with the humerus in neutral, maximum internal and maximum external rotation. Estimate the maximum forward elevation.14

If instability can be demonstrated, it is critical to identify the cause and develop a solution to the problem. Make sure that the implants have been positioned correctly with respect to the bone and to each other. Overcome any conflicts between the proximal humeral component and soft tissues or osseous structures that surround the glenosphere (e.g. non-union of the greater tuberosity) by excision of the conflicting elements. Inadequate tensioning may be overcome using:

- A thicker cup (+6mm or +9mm)
- A 42mm glenosphere
- A modular humeral lengthener or retentive cups in more extreme cases

If unable to reduce the joint, the options include additional soft tissue releases and lowering the level of humeral resection. When the trials are satisfactory, the trial glenosphere should be removed using the extraction T-Handle so that final implant fixation can be performed.
Definitive Glenosphere Fixation

Standard Glenosphere

Insert the 1.5mm guide pin through the central hole of the metaglene.

Engage the 3.5mm cannulated hex screwdriver in the final glenosphere. Slide the glenosphere on the 1.5mm guide pin until it is in contact with the metaglene (Figure 75). Proper alignment between the glenosphere and metaglene is absolutely essential to avoid cross threading between the components.

If the glenosphere seems difficult to thread onto the metaglene, do not force engagement but re-align the components. If necessary, remove the inferior retractor or improve the capsular release. It is also important to check that there is no soft tissue between the metaglene and glenosphere.

When accurate thread engagement is obtained and after a few turns, remove the guide pin to avoid stripping in the screwdriver.

Standard glenosphere

Tighten until the scapula begins to rotate slightly in a clockwise direction, meaning that the glenoid bearing is closing on the taper of the metaglene.

Gently tap on the glenosphere with the glenosphere impactor a minimum of three times (Figure 76). Tighten the glenosphere central screw again. Care should be taken to ensure that the glenoid bearing is fully locked onto the metaglene. The gentle hammering procedure and screw tightening can be repeated, if necessary, until the screw is fully tightened.

Note: Glenosphere will sit about 1mm proud on the metaglene with consistent uniformity
Definitive Glenosphere Fixation

Eccentric Glenosphere

Eccentric glenosphere

Slide the glenosphere orientation guide onto the screwdriver core and position it in the eccentric glenosphere central slot (Figure 77).

The arrow marked on the orientation guide should be aligned with the base of the coracoid process to position the eccentricity correctly. Maintain the orientation guide in the required position and screw the glenosphere into place using the screwdriver until the glenoid bearing closes on the taper of the metaglene (Figure 78).

Obtain further impaction of the junction by gently hammering the glenosphere with the glenosphere impactor a minimum of three times (Figure 79). Then tighten the glenosphere central screw again. Care should be taken to ensure that the glenoid bearing is fully locked onto the metaglene.

Repeat if necessary until screw is fully tightened.

Note: *Glenosphere will sit about 1mm proud on the metaglene with consistent uniformity*
Definitive Glenosphere Fixation

Glenosphere Removal

If it is necessary to remove the glenosphere (revision or intra-operative size modification), the glenosphere/metaglene junction can be disassembled by unscrewing the glenosphere central screw using the 3.5mm hex head screwdriver (Figure 80). This operation should be done smoothly to avoid central screw damage.
Definitive Humeral Implants Insertion
Cementless Modular Humeral Implants

MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS FOR CEMENTLESS MODULAR IMPLANTS

Remove the trial cups and trial implants using the humeral implant driver.

Select the appropriate final modular humeral implants that correspond to the trial implants.

Place the final modular epiphysis on the final modular stem in the same rotational position used for the trial implants (Figure 81).

Screw the final modular epiphysis together with the final humeral stem, using the 3.5mm hex screwdriver and the special locking wrench for modular implants (Figure 82).

Both components should then be mounted on the humeral implant driver and driven down the intramedullary canal, aligning the anterior fin of the stem with the bicipital groove (Figure 83). The epiphysis should be aligned with the edge of the bone resection.
Definitive Humeral Implant Insertion
Cemented Monobloc Humeral Implants

MAKE SURE YOU ARE USING THE DEDICATED INSTRUMENTS
FOR CEMENTED MONOBLOC HUMERAL IMPLANTS

Remove the trial cups and trial implants using the humeral implant driver. Select the appropriate final monobloc humeral implant corresponding to the trial implant.

Inserting cement restrictor

Determine the trial size of the cement restrictor and gauge the implantation depth (Figure 84). Check that the trial restrictor is firmly seated in the canal, then remove trial.

Use pulsatile lavage and a nylon brush to clear the humeral canal of debris and to open the interstices of the bone ready for the cement. Place the definitive cement restrictor at the appropriate depth and check that it is firmly seated in the canal.

Pass non-absorbable sutures such as DePuy Mitek ORTHOCORD® Suture, through the proximal humerus near the lesser tuberosity to enable secure re-attachment of the subscapularis (if possible). Avoid re-attachment if unable to externally rotate the humerus to zero degrees.

Irrigate the canal, during a secondary cleaning, using pulsatile lavage to remove loose bone remnants and marrow. Some surgeons may wish to insert a one-inch gauze pre-soaked in an epinephrine (1:1,000,000 solution) or hydrogen peroxide solution to aid haemostasis and the drying of the humeral canal (Figure 85).

Cement in the humeral implant as directed.
Definitive Humeral Implant Insertion

Implant insertion

Introduce the final implant in the chosen version in line with the long axis of the humerus, using the humeral implant driver (0 degrees to 10 degrees of retroversion) (Figure 86).

Excess cement will extrude from the canal and should be removed before curing is complete. Inspect the exposed portion of the humeral component for cement and remove as necessary. Maintain pressure on the driver until the cement is fully polymerized to avoid micromotion that could cause crack propagation. Remove the lap sponge dam and irrigate the wound thoroughly. Place the trial articular surface and reduce the joint. Confirm stability and dislocate the humerus.

Note: Retroversion is calculated with reference to the forearm axis (0 to 10 degrees)
Definitive Humeral Implant Insertion

Final cup fixation

Impact the final humeral cup using the cup impactor (Figure 87).

Step 1

Insert the polyethylene humeral cup by hand. Turn it 180 degrees in the epiphysis to make sure that it is evenly seated and that there is no soft tissue, cement or fluid interfering with the cup to epiphysis connection (Figure 88).
Definitive Humeral Implant Insertion

Step 2

Once you are confident that you have perfect alignment, impact the humeral cup at a 90 degree angle to the epiphysis (Figure 89). Make sure the arm is fully supported to ensure full impaction.

Step 3

Once fully seated there will be approximately a 1mm gap between the lip of the cup and the epiphysis. The 1mm gap will aid future revisions if necessary. The cup should not move or shift when touched. If this is the case, realign the implant and repeat the impaction steps (Figure 90).

When a humeral spacer is needed, impact it first on the epiphysis and then impact the final cup on it.

Note: All junction surfaces between the implant components should be clean and free of any tissue before impaction.

Reduce the joint and carry out a final assessment of joint stability and range of motion.
Cases of proximal bone loss will be treated using cemented monobloc humeral implants to avoid any risk of component dissociation. Long monobloc stems may be required in some cases.

The preparation of the humeral canal for long stems uses the same technique described for standard stems, with the exception of the procedure for reaming the humeral canal, which differs in this respect: the entire length of the cutting flutes should be passed down the intramedullary canal instead of being stopped at the mark (Figure 91).

A positioning jig is available to hold both the trial long stem and the final implant in place at the correct height and in retroversion.

1. Tighten the fin clamp on the humeral shaft first using the 3.5mm screwdriver (Figure 92).

2. Place the fin clamp over the vertical height gauge of the humeral shaft clamp and secure the fin clamp to the central hole in the anterior fin of the prosthesis.

3. Place the prosthesis at the appropriate height.

4. Tighten the fin clamp to secure it to the vertical height gauge.

The jig can be left in place while testing motion, and used to place the final stem at the height determined during the trials.
Cases of Proximal Humeral Bone Loss

Note that aligning the retroversion guide pin with the forearm places the implant in 30 degree retroversion. Readjust the retroversion of the jig to match 0 to 10 degrees retroversion as used for the reverse shoulder prosthesis (Figure 93).

Height lines are also present on the trial long stems to enable better marking of the appropriate prosthesis height. Determine an appropriate mark, then place the trial stem beside the final implant and mark the corresponding height (Figure 94). Use that mark to cement the stems at the proper height.

Sutures through the stem fin holes (smooth edges) can be used to reconstruct the proximal humerus.

Note: This will have to be done by estimating when you are between 0 to 10 degrees.
When revision of a reverse shoulder is required due to glenoid loosening, or when glenoid bone stock is insufficient to fix a metaglene securely, the reverse shoulder can be converted to an hemi-prothesis as a salvage procedure. Specific hemi-heads with lateral head coverage, DELTA XTEND CTA heads, are available. This is also indicated for intraoperative glenoid fracture.

Remove the glenosphere using the 3.5mm hex head screwdriver. Remove the metaglene locking screws using the locking screwdriver and the non-locking screw using the 3.5mm hex head screwdriver. Remove the metaglene using the extraction T-Handle and remove the humeral cup using the cup extraction clamp (Figure 95).

Place the DELTA XTEND CTA Head Reamer Guide in the epiphysis (Figure 96). Align the anterior and posterior slot of the reaming guide with the slots of the epiphysis and impact the reaming guide gently with a mallet.

Assemble the DELTA XTEND CTA head reamer with the T-Handle. Ream the area around the epiphysis manually (Figure 97). If the DELTA XTEND CTA Trial Head does not obtain perfect seating on the epiphysis, finish the preparation using a rongeur.

Choose the appropriate size of DELTA XTEND CTA Head using the trial heads.

Gently impact the appropriate final head using the humeral head impactor (Figure 98). Make sure that the junction surfaces between the components are clean and free of any soft tissue before impaction. The retroversion of the DELTA XTEND CTA head should be chosen to match the patient’s anatomy. This requires that the head is placed in the proper orientation before impacting.
Post-Operative Management

Post-operative physiotherapy is an important factor in the outcome of this procedure, since stability and mobility now depend on the deltoid alone. The physiotherapy program, which should be planned to suit each individual patient, consists of two phases:

1. **Early phase (0 to 6 weeks)**

 Two days after the operation, the patient may be mobile. This early phase is dedicated to gentle and gradual recovery of the passive range of shoulder motion: abduction of the scapula, anterior elevation and medial and lateral rotation. An abduction cushion may be used to relieve pressure on the deltoid. Physiotherapy is mainly performed with the patient supine, passive and with both hands holding a bar that is manipulated by the contralateral hand, as described by Neer. The patient is encouraged to use the affected arm post-operatively to eat and write, but should not use it to push behind the back or to raise themselves from the sitting position to the standing position. In conjunction with these exercises for scapulohumeral recovery, it is important to strengthen muscle connection with the scapula in order to facilitate muscle and implant function. Passive exercise in a swimming pool is recommended as soon as scars begin to form. More caution is required to protect the deltoid muscle from excessive demand if a superior approach has been used for surgery.

2. **Late phase (after 6 weeks)**

 After the sixth week, active strengthening movements may gradually be added to the program. These exercises, which closely follow everyday activities, are to be performed in a sitting or standing position using conventional methods, with isometric exercises and resistance movements becoming increasingly important. A series of exercises for rhythmic stabilization of the upper arm as well as eccentric work on lowering the arms complete the strengthening of the muscles. Physiotherapy may be performed over a period of at least six months.
Ordering Information

Implants

<table>
<thead>
<tr>
<th>Code</th>
<th>Implant Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1307-08-100</td>
<td>Monobloc Humeral Cemented Stem Epiphysis Size 1 8mm Standard</td>
</tr>
<tr>
<td>1307-10-100</td>
<td>Monobloc Humeral Cemented Stem Epiphysis Size 1 10mm Standard</td>
</tr>
<tr>
<td>1307-12-100</td>
<td>Monobloc Humeral Cemented Stem Epiphysis Size 1 12mm Standard</td>
</tr>
<tr>
<td>1307-14-100</td>
<td>Monobloc Humeral Cemented Stem Epiphysis Size 1 14mm Standard</td>
</tr>
<tr>
<td>1307-12-200</td>
<td>Monobloc Humeral Cemented Stem Epiphysis Size 2 12mm Standard</td>
</tr>
<tr>
<td>1307-14-200</td>
<td>Monobloc Humeral Cemented Stem Epiphysis Size 2 14mm Standard</td>
</tr>
<tr>
<td>1307-10-000</td>
<td>Modular Humeral Stem 10mm HA</td>
</tr>
<tr>
<td>1307-12-000</td>
<td>Modular Humeral Stem 12mm HA</td>
</tr>
<tr>
<td>1307-14-000</td>
<td>Modular Humeral Stem 14mm HA</td>
</tr>
<tr>
<td>1307-16-000</td>
<td>Modular Humeral Stem 16mm HA</td>
</tr>
<tr>
<td>1307-20-101</td>
<td>Modular Centered Epiphysis Size 1 HA</td>
</tr>
<tr>
<td>1307-20-102</td>
<td>Modular Eccentric Epiphysis Size 1 Left HA</td>
</tr>
<tr>
<td>1307-20-103</td>
<td>Modular Eccentric Epiphysis Size 1 Right HA</td>
</tr>
<tr>
<td>1307-20-201</td>
<td>Modular Centered Epiphysis Size 2 HA</td>
</tr>
<tr>
<td>1307-20-202</td>
<td>Modular Eccentric Epiphysis Size 2 Left HA</td>
</tr>
<tr>
<td>1307-20-203</td>
<td>Modular Eccentric Epiphysis Size 2 Right HA</td>
</tr>
<tr>
<td>1307-38-203</td>
<td>Standard Humeral PE Cup 38mm +3mm</td>
</tr>
<tr>
<td>1307-38-206</td>
<td>Standard Humeral PE Cup 38mm +6mm</td>
</tr>
<tr>
<td>1307-38-209</td>
<td>Standard Humeral PE Cup 38mm +9mm</td>
</tr>
<tr>
<td>1307-42-203</td>
<td>Standard Humeral PE Cup 42mm +3mm</td>
</tr>
<tr>
<td>1307-42-206</td>
<td>Standard Humeral PE Cup 42mm +6mm</td>
</tr>
<tr>
<td>1307-42-209</td>
<td>Standard Humeral PE Cup 42mm +9mm</td>
</tr>
<tr>
<td>1307-38-106</td>
<td>Retentive Humeral PE Cup 38mm +6mm</td>
</tr>
<tr>
<td>1307-42-106</td>
<td>Retentive Humeral PE Cup 42mm +6mm</td>
</tr>
<tr>
<td>1307-30-009</td>
<td>Humeral Spacer +9mm</td>
</tr>
<tr>
<td>1307-38-703</td>
<td>High Mobility PREMIERON® X-Linked PE Humeral Cup Diameter 38mm +3mm</td>
</tr>
<tr>
<td>1307-38-706</td>
<td>High Mobility PREMIERON® X-Linked PE Humeral Cup Diameter 38mm +6mm</td>
</tr>
<tr>
<td>1307-38-709</td>
<td>High Mobility PREMIERON® X-Linked PE Humeral Cup Diameter 38mm +9mm</td>
</tr>
<tr>
<td>1307-42-703</td>
<td>High Mobility PREMIERON® X-Linked PE Humeral Cup Diameter 42mm +3mm</td>
</tr>
<tr>
<td>1307-42-706</td>
<td>High Mobility PREMIERON® X-Linked PE Humeral Cup Diameter 42mm +6mm</td>
</tr>
<tr>
<td>1307-42-709</td>
<td>High Mobility PREMIERON® X-Linked PE Humeral Cup Diameter 42mm +9mm</td>
</tr>
</tbody>
</table>
Ordering Information

Implants

Glenoid Implants
- **1307-60-038** Eccentric Glenosphere 38mm
- **1307-60-042** Eccentric Glenosphere 42mm
- **1307-60-138** Standard Glenosphere 38mm
- **1307-60-142** Standard Glenosphere 42mm
- **1307-60-000** Metaglene

Non Locking Metaglene Screw
- **1307-70-018** Non Locking Metaglene Screw 4.5mm x 18mm
- **1307-70-024** Non Locking Metaglene Screw 4.5mm x 24mm
- **1307-70-030** Non Locking Metaglene Screw 4.5mm x 30mm
- **1307-70-036** Non Locking Metaglene Screw 4.5mm x 36mm
- **1307-70-042** Non Locking Metaglene Screw 4.5mm x 42mm

Locking Metaglene Screw
- **1307-90-024** Locking Metaglene Screw 4.5mm x 24mm
- **1307-90-030** Locking Metaglene Screw 4.5mm x 30mm
- **1307-90-036** Locking Metaglene Screw 4.5mm x 36mm
- **1307-90-042** Locking Metaglene Screw 4.5mm x 42mm
- **1307-90-048** Locking Metaglene Screw 4.5mm x 48mm

REVISION IMPLANT CODES

Cemented Monobloc Long Stems
- **1307-08-110** Monobloc Humeral Cemented Stem Epiphysis Size 1 8mm Long
- **1307-10-110** Monobloc Humeral Cemented Stem Epiphysis Size 1 10mm Long
- **1307-12-110** Monobloc Humeral Cemented Stem Epiphysis Size 1 12mm Long
- **1307-14-110** Monobloc Humeral Cemented Stem Epiphysis Size 1 14mm Long
- **1307-10-210** Monobloc Humeral Cemented Stem Epiphysis Size 2 10mm Long
- **1307-12-210** Monobloc Humeral Cemented Stem Epiphysis Size 2 12mm Long
- **1307-14-210** Monobloc Humeral Cemented Stem Epiphysis Size 2 14mm Long

CTA Heads
- **1307-48-021** DELTA XTEND CTA Head 48mm x 21mm
- **1307-48-026** DELTA XTEND CTA Head 48mm x 26mm
- **1307-52-021** DELTA XTEND CTA Head 52mm x 21mm
- **1307-52-026** DELTA XTEND CTA Head 52mm x 26mm
Length of Cementless Modular Humeral Implants

<table>
<thead>
<tr>
<th>Size</th>
<th>Under Epiphysis</th>
<th>Total Length</th>
<th>Epiphysis Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm</td>
<td>110mm</td>
<td>138mm</td>
<td>Epi 1 Cent Ecc-L Ecc-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epi 2 Cent Ecc-L Ecc-R</td>
</tr>
<tr>
<td>12mm</td>
<td>117mm</td>
<td>145mm</td>
<td>Epi 1 Cent Ecc-L Ecc-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epi 2 Cent Ecc-L Ecc-R</td>
</tr>
<tr>
<td>14mm</td>
<td>126mm</td>
<td>153mm</td>
<td>Epi 1 Cent Ecc-L Ecc-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epi 2 Cent Ecc-L Ecc-R</td>
</tr>
<tr>
<td>16mm</td>
<td>135mm</td>
<td>162mm</td>
<td>Epi 1 Cent Ecc-L Ecc-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epi 2 Cent Ecc-L Ecc-R</td>
</tr>
</tbody>
</table>

Length of Cemented Monobloc Humeral Implants

<table>
<thead>
<tr>
<th>Designation</th>
<th>Cat Number</th>
<th>Under Epiphysis</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 8 Std</td>
<td>1307-08-100</td>
<td>105mm</td>
<td>132mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 10 Std</td>
<td>1307-10-100</td>
<td>110mm</td>
<td>137mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 12 Std</td>
<td>1307-12-100</td>
<td>117mm</td>
<td>144mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 14 Std</td>
<td>1307-14-100</td>
<td>126mm</td>
<td>153mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 2 10 Std</td>
<td>1307-10-200</td>
<td>110mm</td>
<td>137mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 2 12 Std</td>
<td>1307-12-200</td>
<td>117mm</td>
<td>145mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 2 14 Std</td>
<td>1307-14-200</td>
<td>126mm</td>
<td>154mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 8 Long</td>
<td>1307-08-110</td>
<td>170mm</td>
<td>197mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 10 Long</td>
<td>1307-10-110</td>
<td>180mm</td>
<td>207mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 12 Long</td>
<td>1307-12-110</td>
<td>182mm</td>
<td>209mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 1 14 Long</td>
<td>1307-14-110</td>
<td>196mm</td>
<td>223mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 2 10 Long</td>
<td>1307-10-210</td>
<td>180mm</td>
<td>207mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 2 12 Long</td>
<td>1307-12-210</td>
<td>182mm</td>
<td>210mm</td>
</tr>
<tr>
<td>Monobloc Hum Cemented Epiphysis 2 14 Long</td>
<td>1307-14-210</td>
<td>196mm</td>
<td>224mm</td>
</tr>
</tbody>
</table>
Ordering Information

Humeral Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2307-99-005</td>
<td>DELTA XTEND Humeral 1 Case Complete</td>
</tr>
<tr>
<td>01 1 2128-61-070</td>
<td>Standard Hudson T-handle</td>
</tr>
<tr>
<td>02 2 1524-00-000</td>
<td>Hudson AO Converter</td>
</tr>
<tr>
<td>03 3 2128-01-006</td>
<td>Medulary Canal Reamer 6mm</td>
</tr>
<tr>
<td>04 4 2128-01-008</td>
<td>Medulary Canal Reamer 8mm</td>
</tr>
<tr>
<td>05 5 2128-01-010</td>
<td>Medulary Canal Reamer 10mm</td>
</tr>
<tr>
<td>06 6 2128-01-012</td>
<td>Medulary Canal Reamer 12mm</td>
</tr>
<tr>
<td>07 7 2128-01-014</td>
<td>Medulary Canal Reamer 14mm</td>
</tr>
<tr>
<td>08 8 2128-01-016</td>
<td>Medulary Canal Reamer 16mm</td>
</tr>
<tr>
<td>09 9 2001-65-000</td>
<td>Humeral Head Impactor</td>
</tr>
<tr>
<td>10 10 2001-66-000</td>
<td>Head Impactor Tip</td>
</tr>
<tr>
<td>11 11 2307-67-000</td>
<td>Humeral Cup Impactor Tip</td>
</tr>
<tr>
<td>12 12 2307-68-000</td>
<td>Spacer Impactor Tip</td>
</tr>
<tr>
<td>13 13 2307-70-008</td>
<td>Handle for Cutting Guide 8mm</td>
</tr>
<tr>
<td>14 14 2307-70-010</td>
<td>Handle for Cutting Guide 10mm</td>
</tr>
<tr>
<td>15 15 2307-70-012</td>
<td>Handle for Cutting Guide 12mm</td>
</tr>
<tr>
<td>16 16 2307-70-014</td>
<td>Handle for Cutting Guide 14mm</td>
</tr>
<tr>
<td>17 17 2307-70-016</td>
<td>Handle for Cutting Guide 16mm</td>
</tr>
<tr>
<td>18 18 2307-72-003</td>
<td>Delto-pectoral Cutting Guide</td>
</tr>
<tr>
<td>19 19 2307-72-004</td>
<td>Delto-pectoral Cutting Plate</td>
</tr>
<tr>
<td>20 20 2307-73-003</td>
<td>Superior-lateral Cutting Guide</td>
</tr>
<tr>
<td>21 21 2307-73-004</td>
<td>Superior-lateral Cutting Plate</td>
</tr>
<tr>
<td>22 22 2307-74-001</td>
<td>Proximal Reaming Guide Holder</td>
</tr>
<tr>
<td>23 23 2307-74-002</td>
<td>Proximal Reaming Guide Holder Internal Rod</td>
</tr>
<tr>
<td>24 24 2490-95-000</td>
<td>Cutting Guide Fixation Pin 3.2mm x 2</td>
</tr>
<tr>
<td>25 25 9399-99-315</td>
<td>Drill Bit 3.2mm</td>
</tr>
<tr>
<td>26 26 2307-74-008</td>
<td>Proximal Reaming Guide 8mm</td>
</tr>
<tr>
<td>27 27 2307-74-010</td>
<td>Proximal Reaming Guide 10mm</td>
</tr>
<tr>
<td>28 28 2307-74-012</td>
<td>Proximal Reaming Guide 12mm</td>
</tr>
<tr>
<td>29 29 2307-74-014</td>
<td>Proximal Reaming Guide 14mm</td>
</tr>
<tr>
<td>30 30 2307-74-016</td>
<td>Proximal Reaming Guide 16mm</td>
</tr>
<tr>
<td>31 31 2307-83-000</td>
<td>Humeral Implant Driver</td>
</tr>
<tr>
<td>32 32 2307-85-000</td>
<td>Humeral Resection Protection Plate</td>
</tr>
<tr>
<td>33 33 2307-74-001</td>
<td>Proximal Reaming Guide Holder</td>
</tr>
<tr>
<td>34 34 2307-74-002</td>
<td>Proximal Reaming Guide Holder Internal Rod</td>
</tr>
</tbody>
</table>
Ordering Information
Humeral Instruments

2307-99-006 DELTA XTEND Humeral 2 Case Complete

1. 2307-08-100 Monobloc Humeral Trial Epiphysis Size 1 8mm Standard
2. 2307-10-100 Monobloc Humeral Trial Epiphysis Size 1 10mm Standard
3. 2307-12-100 Monobloc Humeral Trial Epiphysis Size 1 12mm Standard
4. 2307-14-100 Monobloc Humeral Trial Epiphysis Size 1 14mm Standard
5. 2307-10-200 Monobloc Humeral Trial Epiphysis Size 2 10mm Standard
6. 2307-12-200 Monobloc Humeral Trial Epiphysis Size 2 12mm Standard
7. 2307-14-200 Monobloc Humeral Trial Epiphysis Size 2 14mm Standard
8. 2307-80-003 Monobloc Epiphyseal Disk Size 1
9. 2307-80-004 Monobloc Epiphyseal Disk Size 2
10. 2307-81-003 Monobloc Proximal Reamer Epiphysis Size 1
11. 2307-81-004 Monobloc Proximal Reamer Epiphysis Size 2
12. 2307-10-001 Modular Humeral Stem Trial 10mm
13. 2307-12-001 Modular Humeral Stem Trial 12mm
14. 2307-14-001 Modular Humeral Stem Trial 14mm
15. 2307-16-001 Modular Humeral Stem Trial 16mm
16. 2307-84-001 Modular Implant Locking Wrench 10-12mm
17. 2307-84-002 Modular Implant Locking Wrench 14-16mm
18. 2307-20-102 Modular Eccentric Trial Epiphysis Size 1 Left
19. 2307-20-101 Modular Centred Trial Epiphysis Size 1
20. 2307-20-103 Modular Eccentric Trial Epiphysis Size 1 Right
21. 2307-20-202 Modular Eccentric Trial Epiphysis Size 2 Left
22. 2307-20-201 Modular Centred Trial Epiphysis Size 2
23. 2307-20-203 Modular Eccentric Trial Epiphysis Size 2 Right
24. 2307-38-403 Standard Humeral Cup Trial 38mm +3mm
25. 2307-38-406 Standard Humeral Cup Trial 38mm +6mm
26. 2307-38-409 Standard Humeral Cup Trial 38mm +9mm
27. 2307-42-403 Standard Humeral Cup Trial 42mm +3mm
28. 2307-42-406 Standard Humeral Cup Trial 42mm +6mm
29. 2307-42-409 Standard Humeral Cup Trial 42mm +9mm
30. 2307-30-009 Humeral Spacer Trial +9mm
31. 2307-38-506 Retentive Humeral Cup Trial 38mm +6mm
32. 2307-42-506 Retentive Humeral Cup Trial 42mm +6mm
33. 2307-38-303 High Mobility Humeral Cup Trial 38mm +3mm
34. 2307-38-306 High Mobility Humeral Cup Trial 38mm +6mm
35. 2307-38-309 High Mobility Humeral Cup Trial 38mm +9mm
36. 2307-42-303 High Mobility Humeral Cup Trial 42mm +3mm
37. 2307-42-306 High Mobility Humeral Cup Trial 42mm +6mm
38. 2307-42-309 High Mobility Humeral Cup Trial 42mm +9mm
39. 2307-79-010 Humeral Broach 10mm
40. 2307-79-012 Humeral Broach 12mm
41. 2307-79-014 Humeral Broach 14mm
42. 2307-79-016 Humeral Broach 16mm
43. 2307-01-030 Broach Handle
44. 2307-01-031 Goniometer
45. 2307-01-032 Broach Handle Plate
46. 2307-76-002 Centred Proximal Reaming Adaptor Size 2
47. 2307-76-000 Centred Proximal Reaming Adaptor
48. 2307-76-001 Eccentric Proximal Reaming Adaptor Size 1
49. 2307-77-004 Epiphyseal Disk for Modular Implant Size 2
50. 2307-77-003 Epiphyseal Disk for Modular Implant Size 1
51. 2307-78-003 Proximal Reamer for Modular Implant Size 1
52. 2307-78-004 Proximal Reamer for Modular Implant Size 2
Ordering Information
Glenoid Instruments

2307-99-007 DELTA XTEND Glenoid Case Complete

2307-86-002 Forked Retractor
2307-87-004 Metaglene Central Guide Pin 2.5mm x 2
2307-87-005 Metaglene Holder
2307-87-002 Metaglene Holder Internal Rod
2307-87-003 Metaglene Positioning Plate
2307-88-027 Glenoid Resurfacing Reamer 27mm
2307-88-242 Glenoid Manual Reamer 42mm
2307-88-300 Glenoid Reaming Level Checker
2307-89-000 Glenoid Cannulated Stop Drill 7.5mm

2307-90-005 Drill Bit 2.5mm x 120mm x 2
2307-90-004 Screw Guide Pin 1.2mm x 150mm x 5
2307-96-000 Glenosphere Guide Pin 1.5mm x 300mm
2307-91-001 Screw Depth Gauge
2307-93-000 3.5mm Cannulated Hex Screwdriver
2307-92-003 Locking Screwdriver
2307-92-004 Locking Screwdriver Internal Rod
2307-90-003 Glenoid Drill Guide 2.5mm
2307-60-038 Eccentric Glenosphere Trial 38mm
2307-60-138 Standard Glenosphere Trial 38mm
2307-99-002 Extraction T-handle
2307-60-042 Eccentric Glenosphere Trial 42mm
2307-60-142 Standard Glenosphere Trial 42mm
2307-95-000 Glenosphere Orientation Guide
Ordering Information

Revision Instruments

2307-99-008 DELTA XTEND Revision Case Complete

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2307-99-001</td>
<td>Humeral Cup Extraction Clamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ITH003</td>
<td>Stem Impactor/Extractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2307-82-001</td>
<td>DELTA XTEND CTA Head Reamer Guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2307-82-003</td>
<td>DELTA XTEND CTA Head Reamer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ETH001</td>
<td>Standard Humeral Prosthesis Extractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MAI001</td>
<td>Slap Hammer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MDE001</td>
<td>Extraction Rod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2307-08-110</td>
<td>Monobloc Humeral Trial Epiphysis Size 1 8mm Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2307-10-110</td>
<td>Monobloc Humeral Trial Epiphysis Size 1 10mm Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2307-12-110</td>
<td>Monobloc Humeral Trial Epiphysis Size 1 12mm Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2307-14-110</td>
<td>Monobloc Humeral Trial Epiphysis Size 1 14mm Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2307-10-210</td>
<td>Monobloc Humeral Trial Epiphysis Size 2 10mm Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2307-12-210</td>
<td>Monobloc Humeral Trial Epiphysis Size 2 12mm Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2307-14-210</td>
<td>Monobloc Humeral Trial Epiphysis Size 2 14mm Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2307-48-121</td>
<td>DELTA XTEND CTA Trial Head 48mm x 21mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2307-48-126</td>
<td>DELTA XTEND CTA Trial Head 48mm x 26mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2307-52-121</td>
<td>DELTA XTEND CTA Trial Head 52mm x 21mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2307-52-126</td>
<td>DELTA XTEND CTA Trial Head 52mm x 26mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2128-01-035</td>
<td>GLOBAL ® FX Positioning Jig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDICATIONS
DELTA XTEND Reverse Shoulder prosthesis is indicated for use in a grossly deficient rotator cuff joint with severe arthropathy or a previously failed joint replacement with a grossly deficient rotator cuff joint.

The patient’s joint must be anatomically and structurally suited to receive the selected implant(s), and a functional deltoid muscle is necessary to use the device. In cases of bone defects in the proximal humerus, the monobloc implant should be used and then only in cases where the residual bone permits firm fixation of this implant. The DELTA XTEND CTA hemi-shoulder replacement is also indicated for hemi-arthroplasty if the glenoid is fractured intraoperatively or for revision of a previously failed DELTA XTEND Reverse Shoulder.

The metaglene component is HA coated and is intended for cementless use with the addition of screws for fixation. The modular humeral stem and epiphysis components are HA coated and are intended for cementless use. All other components are for cemented use only.

CONTRAINDICATIONS
Shoulder joint replacements may be contraindicated where the patient is overweight, where there is infection, poor bone stock, severe deformity, drug abuse, overactivity, tumor, mental incapacity, muscle, nerve or vascular disease.

WARNINGS AND PRECAUTIONS
The following conditions tend to adversely affect the fixation of the shoulder replacement implants:

1. Marked osteoporosis or poor bone stock,
2. Metabolic disorders or systemic pharmacological treatments leading to progressive deterioration of solid bone support for the implant (e.g., diabetes mellitus, steroid therapies, immunosuppressive therapies, etc.),
3. History of general or local infections,
4. Severe deformities leading to impaired fixation or improper positioning of the implant;
5. Tumors of the supporting bone structures;
6. Allergic reactions to implant materials (e.g. bone cement, metal, polyethylene);
7. Tissue reactions to implant corrosion or implant wear debris;
8. Disabilities of other joints.

ADVERSE EVENTS
The following are the most frequent adverse events encountered after total or hemi-shoulder arthroplasty:

1. Change in position of the prosthesis, often related to factors listed in WARNINGS AND PRECAUTIONS.
2. Early or late infection;
3. Early or late loosening of the prosthetic component(s), often related to factors listed in WARNING AND PRECAUTIONS;
4. Temporary inferior subluxation. Condition generally disappears as muscle tone is regained;
5. Cardiovascular disorders including venous thrombosis, pulmonary embolism and myocardial infarction;
6. Hematoma and/or delayed wound healing;
7. Pneumonia and/or atelectasis;
8. Subluxation or dislocation of the replaced joint.
References

17. Data on file at DePuy Orthopaedics, Inc. WR#030290.

18. ORTHOCORD® Suture is a registered trademark of DePuy Mitek, Inc.